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Abstract

This paper decomposes consumer price inflation into pure inflation, relative price

inflation, and idiosyncratic inflation by estimating a dynamic factor model á la Reis

and Watson (2010) on a data set of 146 monthly disaggregated prices from 1995 to

2019. We find that pure inflation is the trend around which PCE price inflation fluc-

tuates, while relative price inflation and idiosyncratic inflation drive the fluctuation

of PCE price inflation around the trend. Unlike Reis and Watson, we find that labor

market slack is the main driver of pure inflation and that energy prices account for

variation in relative price inflation.
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1 Introduction

In an influential paper, Reis and Watson (2010) (henceforth, RW) develop a dynamic factor

model to separate changes in inflation into three components: a pure inflation component,

which measures common and equiproportional changes in all prices; a relative price change

component, which captures common changes that raise the prices of some goods and ser-

vices relative to others; and an idiosyncratic component, which captures sector-specific

price changes or measurement errors that affect a single or a few sectors in isolation. Their

main conclusion is that, unlike previous research on the “flattened Phillips curve” (for

example, Atkeson and Ohanian (2001)), relative price inflation has a statistically signifi-

cant Phillips correlation with real activity, whereas the pure inflation component does not.

In addition, aggregate shocks account for most (about 90 percent) of the variability of

aggregate inflation, mainly through the relative price change component. Relative price

inflation, in turn, is weakly related to food and energy prices, whereas it is strongly related

to the prices of nondurables and services.1

RW estimate their model on a panel of 187 disaggregated PCE price inflation rates

from 1959:Q1 to 2006:Q2. Their sample includes a period in which inflation was (nearly)

non-stationary (approximately from the mid-1970s to the mid-1980s), while over the rest of

the sample, inflation was stationary. From a theoretical point of view, this combination of

(nearly) non-stationary and stationary data poses a problem because both the specification

of the dynamic factor model and the estimation method that RW employ might not be

suited for non-stationary data (see, Barigozzi and Luciani, 2019, and Barigozzi et al.,

2021, for detail). In addition, the U.S. economy has gone through structural changes in

past decades that might have altered the features of the three inflation components as

well as their dynamic association with real activity. For example, (1) numerous studies
1 Miles et al. (2017) extend Reis and Watson’s (2010) analysis to the era of post-Great Recession years

and find that pure inflation stayed low and stable after the recession. Miles et al. (2017) attribute the
low pure price inflation to declining oil prices and effective monetary policy. Ahn et al. (2021) apply
Reis and Watson’s (2010) method to wage inflation for 1990-2019 and find that the relative wage inflation
component is better aligned with the unemployment rate gap than other aggregate wage inflation measures
are.
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show that the Phillips correlation has weakened substantially and almost disappeared (for

example, Coibion and Gorodnichenko, 2015; Hall, 2011), (2) Eo et al. (2020) show that the

dynamics of goods inflation became almost entirely dominated by transitory noises starting

in the early 1990s, and (3) the oil price pass-through into U.S. inflation has become smaller

(see, for example, Conflitti and Luciani, 2019). Therefore, RW’s conclusion about inflation

dynamics may not be true for the recent period.

In this paper, we estimate a dynamic factor model á la RW to explore inflation dynamics

on a data set of 146 disaggregated PCE price inflation rates from January 1995 to December

2019—a period in which observed inflation is clearly consistent with a stationary time series

model—with a particular focus on the Phillips correlation. Our results point toward an

interpretation of inflation dynamics that is quite different from that of RW.

First, opposite to RW’s findings, the pure inflation component exhibits a statistically

significant Phillips correlation with labor market slack, whereas the relative price inflation

component and the idiosyncratic component do not. Although the average Phillips corre-

lation of pure inflation during the sample period is small, we find that the unemployment

rate gap is the key driver of pure inflation during the Great Recession and the subsequent

recovery, the so-called missing deflation period and missing inflation period (for example,

Constâncio, 2015, Coibion and Gorodnichenko, 2015).

Second, pure inflation is the trend around which PCE price inflation fluctuates, whereas

higher-frequency variation in PCE price inflation is accounted for by relative price inflation

and idiosyncratic inflation. Quite differently, RW’s estimates show that the downward

trend in inflation during the 1970s and 1980s was accounted for by relative price inflation.

Third, relative price inflation, which is essentially driven by energy price inflation, is

the main driver of the variability in headline PCE price inflation. Quite differently, in

RW, relative price inflation, which they find is partially driven by energy price inflation,

accounts for only half of the variability of headline inflation.

Last, the idiosyncratic component accounts for more than 95 percent of the volatility

in disaggregated price inflation, while RW attribute only three-fourths of the variability

to the idiosyncratic component. However, in line with RW, the idiosyncratic component
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is the main driver of the PCE price index excluding food and energy (henceforth “core”

PCE).

The rest of the paper is structured as follows. In section 2 we present the model, and

in section 3 we present the estimates. Section 4 concludes.

2 Methodology

2.1 A dynamic factor model á la Reis and Watson (2010)

Let πt = (π1t · · · πnt)′, with t = 1, . . . , T , be an n × 1 vector of disaggregated monthly

inflation rates with sample mean π̄t = (π̄1t · · · π̄nt)′; a dynamic factor model is written as

πt − π̄t = ΛFt + ut (1)

Φ(L)Ft = εt (2)

βi(L)uit = eit i = 1, . . . , n (3)

where Ft is a vector of r common factors capturing co-movements across series and across

time, Λ is an n×r matrix of factor loadings, Φ(L) and βi(L) are stationary polynomials, and

ut is an n×1 vector of the idiosyncratic component. In this model, it is assumed that (i) the

common factors Ft are pervasive, (ii) the idiosyncratic components ut are weakly cross-

sectionally correlated and weakly dynamically correlated; and (iii) the common shocks εt

and the idiosyncratic shocks et = (e1t · · · ent)′ are two independent sources of fluctuations.

In the specification of model (1)–(3) used by RW, the common factors Ft are de-

composed in two components: the first component, the scalar at, captures absolute price

changes that affect all prices equiproportionately; the second component, the (r − 1) × 1

vector Rt, captures relative price changes. So, let Ft = (at,Rt)
′, then ΛFt can be written

as

ΛFt = Iat + ΓRt, (4)
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where I is an n × 1 vector of ones and Γ is an n × (r − 1) matrix. Following RW, we

consider a model with three factors (r = 3), four lags in the VAR in (2), and one lag in

the AR models in (3), and we use the normalizations that the columns of Γ are mutually

orthogonal and add up to zero.

The two components at and Rt in (4) are not separately identifiable, because an ab-

solute change in prices cannot be distinguished from a change in “average relative prices”

given that there are many ways to define the average.2 Therefore, RW identify the two

independent components from the following:

νt =at − E[at|{Rτ}Tτ=1] (5)

and

ρt =E[Ft|{Rτ}Tτ=1] = ΓRt + E[at|{Rτ}Tτ=1], (6)

where νt is the “pure” inflation component and ρt is the relative price change component.

The pure inflation component captures price changes that have an equiproportional effect

on all prices and are uncorrelated with changes in relative prices at any point in time. The

relative-price component captures all the common changes in prices that are associated

with changes in relative prices at some point in time.

Following RW, we first estimate the system of equations (1)–(4) by maximum likelihood

via theExpectation-Maximization (EM) algorithm. Next, we identify νt by subtracting the

projection E[at|{Rτ}Tτ=1] from at and estimate ρt by adding E[at|{Rτ}Tτ=1] to ΓRt. The

projection E[at|{Rτ}Tτ=1] is computed by means of the Kalman smoother of at from a

state space model, where the observation equation is Rt = (0 I)(at R′t)
′ and the state

equation is (2).3 The goal of this second step is to exclude all the information on past,

present, and future relative inflation factors from the pure inflation factor.
2 RW illustrates this identification issue as follows. For an (r − 1) × 1 vector α, we have Iat + ΓRt =

I(at+α′Rt)+(Γ−Iα′)Rt. The pair (at, Rt) cannot be distinguished from (at+α′Rt, Rt) without a further
identifying restriction.

3 For more details on the estimation of model, we refer the reader to the appendix in the working paper
version of RW. In addition, see Barigozzi and Luciani (2020) for the consistency of the EM algorithm when
estimating large-dimensional dynamic factor models.
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Finally, to decompose headline inflation into pure inflation, relative price inflation, and

idiosyncratic inflation, we aggregate the estimates obtained for each disaggregated price

by using the weights in the overall PCE price index:

νht = νt +
n∑
i=1

witπ̄i (7)

ρht =
n∑
i=1

wit(ΓiRt + E[at|{Rτ}Tτ=1]) (8)

uht = πht − νht − ρht (9)

where the superscript h stands for “headline,” wit is the weight in PCE of item i at time t,

and uht is the idiosyncratic component. These quantities can also be easily estimated for

core PCE price inflation, energy price inflation, and food price inflation by simply using

the corresponding weights.

To conclude, note that we construct νht and ρht differently from that of RW. We estimate

νht and ρht using the series’ weights in PCE, which allows us to construct inflation measures

that are comparable to headline PCE price inflation and core PCE price inflation. Quite

differently, RW estimate the index of pure inflation from νht = νt and the index of relative

price inflation from ρht = β′Rt, where β is the OLS coefficient of the regression of Rt

on zt = πht − at. RW employ this projection to construct relative price inflation because

they lost some of the PCE price items when they removed series that exhibit identical

variations; in other words, their data set does not preserve the structure of PCE. A more

detailed discussion is found in section 3.1.

2.2 Potential issues in the Reis and Watson’s (2010) model

As we mention in the introduction, RW estimate the model on a very long sample covering

more than 50 years. However, this sample includes a period in which inflation was (nearly)

non-stationary (approximately from the mid-1970s to the mid-1980s), while in the rest

of the sample inflation was stationary. There are two potential issues related to non-
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stationarity in the data: one is the model misspecification and consequent bias in the

estimated parameters; the other is the link (or dependence) between the order of integration

of idiosyncratic components and the estimation of the factor loadings. Regarding the first

issue, because part of the sample is stationary and another part is non-stationary, it is

clear that there is a structural break in the dynamics of the factors. In the presence of

such a structural break, a dynamic factor model that does not consider potential model

instability arising from the structural break will likely produce biased parameter estimates.

The second issue is related to the EM algorithm employed by RW. The EM algorithm

produces consistent parameter estimates as long as the idiosyncratic components are sta-

tionary (Barigozzi and Luciani, 2019). If the idiosyncratic components are non-stationary,

however, the factor loadings are not consistently estimated with the EM algorithm. The

intuition is the following. The factor model can be understood as a regression model

where the factors are the regressors, the factor loadings are the coefficients, and the id-

iosyncratic components are the residuals. The OLS estimate of a regression model with a

non-stationary residual yields inconsistent estimates of the parameters

In this paper, we take a pragmatic approach to tackle the issues brought about by

having a non-stationary sub-sample. Namely, instead of building a new model that copes

with the non-stationarity, we only use the sample period in which the data are stationary.

3 Empirical application

3.1 Dataset

The model is estimated on a data set of 146 disaggregated PCE price inflation rates from

January 1995 to December 2019. This data set represents a particular disaggregation of

PCE prices in which each disaggregated price index is constructed from a distinct data

source. For the complete list of prices and detailed information on the data sources, we

refer the reader to Luciani (2020).

The PCE price index is constructed by the Bureau of Economic Analysis (BEA). Be-
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cause the BEA does not record goods and services prices, it relies (mostly) on price indexes

constructed by the Bureau of Labor Statistics to compile PCE prices. Specifically, most

PCE prices are constructed by taking the corresponding (or conceptually closest) Con-

sumer Price Index (CPI), a few of them are constructed by using a Producer Price Index

(PPI) series (for example, airfares and some medical prices), and a few of them are imputed

by the BEA. Because there is not always a corresponding CPI or PPI for each PCE price,

some disaggregated PCE prices are constructed out of the same CPI (or PPI) index, and

hence are identical (or nearly so).4

When estimating a dynamic factor model, it is crucial to avoid having disaggregated

inflation rates that are highly correlated by construction, or else the model’s estimation

would considerably worsen (see, for example, Barigozzi and Luciani, 2020). Thus, having

a data set in which each disaggregated price index is constructed from a distinct data

source is crucial, because this setup avoids bringing on board spurious correlation in the

estimation of factors.5

Now, although RW do not control for the source of each disaggregated PCE price

in their data set, they clean and correct their data set for excess cross correlation using

statistical methods. However, by doing so, they lose some items in the PCE basket, and

thus their data set does not cover 100 percent of consumer spending. In other words, RW’s

data set does not preserve the structure of PCE prices, whereas our data set does.

Finally, to construct the aggregated quantities in equations (7) to (9), we use the

approximate PCE weights computed as in Dolmas (2005), as the PCE price index is a

Fisher index. It is well known that a Fisher index has the non-additive property (see

Whelan, 2002, as well as Bureau of Economic Analysis, 2017, chapter 4), meaning that the

aggregate index is not a weighted average of its disaggregated components. In principle,

proper weights for PCE prices do not exist. Diewert (1976, 1978), however, shows that a
4 For example, the PCE price indexes for “bicycles and accessories,” “Pleasure boats,” “Pleasure aircraft,”

and “Other recreational vehicles,” are all constructed out of the CPI “Sports vehicles including bicycles.”
The price changes of these four items are either identical or almost the same.

5 Luciani (2020) shows that when the source of PCE prices is not considered, the model parses as
common the strong correlation between prices that are constructed from the same CPI (or PPI), thus
overestimating the share of fluctuations accounted for by the common factors.
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Törnqvist index numerically approximates a Fisher index. Therefore, we use the Törnqvist

weights as in Dolmas (2005) and Luciani (2020) to approximate the headline PCE price

inflation.

3.2 Decomposition of PCE price variability

Figure 1 shows the decomposition of month-over-month PCE price inflation (black line)

into pure inflation (red line), relative price inflation (blue line), and idiosyncratic inflation

(yellow line). Table 1 reports the percentage of variance accounted for by each of these

components.

Table 1: Variance decomposition
(percent)

Panel A: Ahn-Luciani Panel B: Reis-Watson

νt 0ρt 0ut νt 0ρt 0ut

(1) Avg. Dis. 1.3 02.8 95.9 5 19 76

(2) Headline 3.5 92.9 03.6 16 51 33

(3) Core 9.4 39.1 51.5 24 32 44

(4) Food 4.5 04.7 90.8 20
(5) Energy 0.1 93.7 06.3 30

Notes: Avg. Dis. stands for average of disaggregate prices. Line (1) shows the average percentage of variance of each
disaggregated price inflation index accounted for by the three components νt, ρt, and ut. Lines (2) to (5) show the average
percentage of variance of the headline, core, food, and energy price inflation indexes accounted for by the three components.

The numbers in panel B are taken from table 1 and table 2 in RW and then multiplied by 100. The numbers in column ut

are computed by subtracting the other two columns from 100 the other two columns. Note that the numbers in panel B are
the average squared coherence over all frequencies. Finally, the numbers in line (1) are medians. The empty cells in panel B
are those numbers not reported by RW.

There are important differences between our results and those of RW. First, disaggre-

gated inflation became more idiosyncratic starting in the mid-1990s (line (1) of table 1).

Indeed, the idiosyncratic component accounts for more than 95 percent of the variability

in disaggregated PCE prices, which is higher than the estimated contribution from RW,

75 percent. Second, similar to RW, the relative price inflation component explains most of

the variation in headline PCE price inflation (first row of figure 1 and line (2) of table 1).

However, the role of pure inflation became smaller than RW’s estimate, as pure inflation
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Figure 1: PCE price decomposition
(month-over-month inflation)
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accounts for less than 5 percent of the fluctuations in headline inflation and 10 percent of

core inflation, on average, from the mid-1990s. Both figures are about 10 to 15 percentage

points lower than the contributions reported in RW.

Third, we find that relative price inflation accounts for most of the volatility in energy

price inflation (fourth row of figure 1), whereas RW find that the association between

the two is fairly limited. In particular, RW claim that conventional measures of relative

inflation, such as nondurables, food, and energy prices, are not comprehensive enough to

capture relative price inflation. In relative terms, RW find that relative price inflation
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is correlated more with the prices of nondurable goods than with energy prices. Quite

differently, we find that relative price inflation accounts for most of the volatility in energy

price inflation.

Fourth, compared to RW, we find that idiosyncratic inflation accounts for a larger

share of fluctuations in core PCE price inflation (about half, versus one-third in RW),

while relative price inflation accounts for a smaller share (about two-fifths, versus one-

third in RW). Our result is also in line with the findings from Eo et al. (2020) who show

that the dynamics of goods inflation changed and became almost entirely dominated by

transitory noises starting in the early 1990s.

Finally, 90 percent of the fluctuations in PCE food price inflation are accounted for by

the idiosyncratic component, while the relative price component, which in RW accounts

for one-fifth of the fluctuations, accounts just for 5 percent.

Next, figure 2 shows the decomposition for year-over-year headline PCE price inflation.

We find that pure inflation is the “trend” (or low-frequency component) around which

headline inflation fluctuates, whereas RW find that the relative price change component

drives the trend in PCE price inflation during the 1970s and 1980s. Meanwhile, relative

price inflation is essentially the portion of headline PCE price inflation accounted for by

energy prices, while idiosyncratic inflation is a moderately persistent residual. Therefore,

despite its relatively small contribution to the volatility of headline PCE price inflation,

pure inflation is the most important component in understanding the inflation dynamics

over the medium term. In the next section, we investigate the drivers of pure inflation.

3.3 Drivers of pure inflation

To find out which variables account for the variability of each inflation component, RW

compute the average squared coherence over different frequencies between each inflation

component and selected macroeconomic variables. Their main findings are (1) that pure

inflation is correlated with nominal interest rates but not with either monetary aggregates

or real activity; and (2) that relative price inflation is associated with real activity.
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Figure 2: PCE price decomposition
(year-over-year inflation)
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To understand what drives pure inflation and relative price inflation, we use an approach

different from RW.We base our analysis on a Phillips curve, a tool commonly used in central

banks (see, for example, Yellen, 2015, and Powell, 2018).

In our Phillips curve model, PCE price inflation is a function of: its first four lags;

longer-run inflation expectations in the previous period as measured by the Michigan survey

(πet−1); economic slack as measured by the CBO unemployment gap (ũt); the exchange rate

(et), as measured by the trade weighted U.S. Dollar Index computed by the Federal Reserve

Board; and the oil price (ot), as measured by the Refiners’ Acquisition Cost of Crude Oil.

The Phillips curve that we estimate in the case of headline PCE price inflation is as follows:

πht = α +
4∑
j=1

βjπ
h
t−j + γπet−1 + δũt + φet + ψot + εt. (10)

We estimate equation (10) on quarterly data over the period 1995:Q1 to 2019:Q4, with

all inflation rates expressed at an annual rate. The model is estimated with Restricted

OLS by imposing the restriction γ = 1 − (β1 + . . . + β4), which implies that changes in

expected inflation are (eventually) passed through one for one to headline inflation. We

also estimate equation (10) by replacing headline inflation with pure inflation and relative
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price inflation. However, when estimating the model for relative price inflation, we do not

impose the restriction on γ as it is strongly rejected by the data.

Table 2 reports the estimated coefficients.

Table 2: Phillips curve: 1995:Q1–2019:Q4
(headline PCE price inflation)

Variable Coefficient πht νht ρht

Persistence
∑4

j=1 βj 0.239 0.874 0.224
[0.992] [0.381] [0.134]

Inflation expectations γ 0.761 0.126 0.116
[0.103] [0.040] [0.446]

Unemployment rate gap δ -0.074 -0.026 -0.046
[0.050] [0.009] [0.056]

Exchange rate φ -0.031 -0.002 -0.021
[0.010] [0.002] [0.011]

Oil price ψ 0.015 0.000 0.015
[0.002] [0.000] [0.002]

R2 0.719 0.921 0.624

Notes: Standard errors are in parentheses. The Phillips curves for πh
t and vht are estimated using Restricted OLS by imposing

the restriction γ = 1− (β1 + . . .+ β4), whereas the Phillips curve for ρht is estimated using simple OLS. B = 1−
∑4

j=1 βj .

The results in column νht suggest that both inflation expectations and labor market

slack are important drivers of pure inflation. Both coefficients are strongly statistically

significant. Meanwhile, the coefficients on the exchange rate and the oil price are not

statistically different from zero. Notably, the opposite is true for relative price inflation, as

shown in column ρht . The exchange rate and the oil price affect relative price inflation (both

coefficients are strongly statistically significant), while the coefficient on the unemployment

rate gap is not statistically significant. Finally, given that fluctuations in headline inflation

are mainly accounted for by relative price inflation, not surprisingly, the Phillips correlation

of headline inflation is not statistically significant either (column πht ).6

To summarize, our analysis indicates that for the post-1995 period, pure inflation has a

statistically significant Phillips correlation with real activity, whereas relative price inflation
6 We also experiment with the unemployment rate and employment-to-population ratio, and the results

are similar.
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does not. This finding is exactly opposite to the conclusion of RW.7

Having determined what drives pure inflation, we can look back at figure 2. Year-over-

year pure inflation was reasonably stable around an average rate of 2.2 percent (with a

standard deviation of 0.2) from the mid-1990s until the Great Recession. However, starting

at the end of 2008, pure inflation declined slowly and reached its lowest level of 1 percent

at the beginning of 2014. After that, it rose again and ended 2019 at 1.8 percent. What

explains these movements in pure inflation?

To analyze how much each explanatory variable in our Phillips curve model contributes

to pure inflation, we rewrite equation (10) as follows:

νht = c(L)γπet−1 + c(L)δũt + c(L)φet + c(L)ψot + c(L)(α + εt)

= ω(L)πet−1 + ρu(L)ũt + ρe(L)et + ρo(L)ot + Ξt. (11)

where c(L) = (1− β1L− . . .− β4L4)−1.

Figure 3: Cumulative contribution to pure inflation
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Figure 3 shows the contribution of each of the five terms on the right-hand side of
7 Recent studies investigate the Phillips correlation based on state-level data (for example, Hazell et al.

(2020) and Fitzgerald et al. (2020)). Hazell et al. (2020) construct state-level price indexes for non-tradable
goods and find that the Phillips correlation is small and stable with the full sample estimate being -0.0062.
Quite differently, Fitzgerald et al. (2020) find that, once the endogeneity of monetary policy is considered,
the Phillips correlation is large and stable (-0.3). In the model of pure inflation, the coefficient on the
unemployment rate gap is -0.026, larger in absolute value than the coefficient of Hazell et al. (2020) but
smaller in absolute value than that of Fitzgerald et al. (2020).
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equation (11) for the two sub periods, 2008 to 2014 and 2014 to 2019. The swings in

pure inflation during the two sub periods are mainly accounted for by the unemployment

rate gap (green bars) and by factors not considered in our Phillips curve model (yellow

bars)—that is, Ξt in (11). In contrast, inflation expectations played a negligible role. This

decomposition confirms that labor market slack is a key driver of pure inflation, which

contrasts with the main conclusion of RW.

4 Conclusions

In this paper, we decompose consumer price inflation into pure inflation, relative price

inflation, and idiosyncratic inflation by estimating a dynamic factor model á la Reis and

Watson (2010). The model is estimated on a data set of 146 monthly disaggregated prices,

all constructed from a distinct data source, over a sample starting in January 1995 and

ending in December 2019.

We find that pure inflation is the trend around which PCE price inflation fluctuates

and that the fluctuations around this trend are driven by both relative price inflation and

idiosyncratic inflation. Pure inflation is mostly driven by labor market slack and inflation

expectations, whereas supply shocks, such as changes in the oil price or the exchange rate,

have no effect on pure inflation.
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